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Abstract

Feature selection is an important topic in data mining. In
this paper, we focus on the problem in unsupervised sce-
nario, which is challenging due to the absence of labels.
We formulate our model RRCS from the viewpoint of self-
representation. For the selection matrix, unlike many previ-
ous methods which take the `2,1-norm regularization to avoid
trivial solution and achieve feature selection, we directly use
the `2,0-norm constraint to obtain a more accurate solution.
By explicitly considering the representation residue, we re-
lax the hard linear constraint in self-representation, making
our model better deal with the nonlinear case. Using the `2,1-
norm loss term, the robustness of RRCS is achieved. More-
over, we add a graph regularization to preserve the local struc-
ture of the original data. An efficient algorithm is derived to
solve the regularized and constrained problem. Extensive ex-
periments on several datasets demonstrate the effectiveness
of the proposed method.

Introduction
In many areas such as data mining, machine learning, and
biological study, one is often confronted with high dimen-
sional data. Dealing with these data directly is both time and
memory consuming, and may degenerate the performance
of learning algorithms, since there usually exist irrelevant
and redundant features and noise in the original data. As a
data preprocessing technique, dimensionality reduction can
be mainly categorized into feature extraction and feature s-
election. PCA (Turk and Pentland 1991), LDA (Belhumeur
et al. 1997) and LLE (Roweis and Saul 2000), just to name
a few, are classical feature extraction methods that project
the data into a new space with lower dimensionality, with-
out informing us on which features are important. Feature
selection aims to select a subset from the original features
for a more compact representation. In some cases where the
features have natural meanings, such as selecting a few of
genes associated with a given disease or biological function
in DNA microarray analysis, and selecting some key words
in text mining, feature selection is preferred. Collecting the
labeled data is usually expensive, while the unlabeled data is
abundant and can be easily obtained. Therefore, it is of great
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value to study the unsupervised feature selection problem,
which is the focus of this paper.

Sparsity regularization technique, due to its solid theoreti-
cal foundation and superior properties, has received growing
attention in the studies of feature selection in recent years.
For a learning model, the norm of regression coefficients is
usually added to the objective function as a regularization
term to avoid over-fitting. It can be viewed that the model is
actually doing feature selection when the norm leads some
coefficients to be zero. The common idea of the regulariza-
tion based feature selection methods is to choose a proper
norm for the selection matrix (vector) to achieve sparseness.
The features corresponding to the non-zero rows (entries)
are then removed. In general, the `0-norm, `1-norm and `∞-
norm are used to achieve flat sparsity, while the `2,0-norm,
`2,1-norm and `2,∞-norm are for structural sparsity.

Unsupervised feature selection is challenging due to the
absence of labels, and there are three main categories of the
regularization based methods. A natural way is to transfor-
m the unsupervised problem into a fake supervised one by
producing the pseudo labels with spectral analysis (Cai et
al. 2010; Zhao et al. 2010). The works in (Hou et al. 2011;
Li et al. 2012; Qian and Zhai 2013; Shi et al. 2014;
Qian and Zhai 2015) share the similar idea but embed the
pseudo label generation and feature selection into a joint
framework. Another direction is based on structure or simi-
larity preservation that a graph is usually exploited to char-
acterize the discriminative or geometrical information of
the data (Masaeli et al. 2010a; Gu et al. 2011; Yang et al.
2011; Zhao et al. 2013; Du et al. 2013; Liu et al. 2014;
Tang et al. 2014; Nie et al. 2016). The third one is based
on self-representation, with the idea that the selected fea-
tures should be able to reconstruct each feature by lin-
ear combination. (Masaeli et al. 2010b; Zhu et al. 2015;
Zhao et al. 2015).

For multi-class feature selection problems, the `2,0-norm
constraint is the most desired one to achieve structural spar-
sity. However, in the methods mentioned above, the most
popular way to do feature selection is by the `2,1-norm reg-
ularization. Since the `2,0-norm is non-convex and hard to
tackle, and the convex `2,1-norm regularization is considered
to be approximately identical to the `2,0-norm regulariza-
tion. (Cai et al. 2013) solved the problem with a `2,0-norm
constraint, and (Zhang et al. 2014) adopted a general `2,p-



norm (0 ≤ p ≤ 1) regularization, while these two are for su-
pervised case. Another problem for many existing methods
is that in the real data, noise is always there and it may have
adverse effect on the constructed graph. Self-representation
based methods naturally consider feature redundancy, while
the underlying assumption of linear correlation between fea-
tures does not always hold in real applications. To address
these problems, in this paper, we are going to propose a Ro-
bust, Regularized and Constrained Self-representation (R-
RCS) model for unsupervised feature selection. The contri-
butions of the paper are mainly four-fold:
• We use the `2,0-norm constraint, rather than its regular-

ization form or other approximated regularization terms
for unsupervised feature selection. The number of select-
ed features can be set directly instead of by tuning the
parameter.

• By explicitly considering the representation residue, we
relax the hard linear constraint in self-representation,
making our model better deal with the case that the corre-
lation between features is non-linear.

• To deal with the noise and outliers, we take the robust
`2,1-norm loss term. The residue can also be explained as
a modeling of noise and outliers, and the regularization of
the residue tends to suppress their effect.

• A simple algorithm is derived to solve the robust, regu-
larized and constrained model. Extensive experiments on
several datasets show that our approach is effective.

Background and Related Works
Notations
Let X ∈ Rn×d be the data matrix, where n is the number
of samples and d is the dimensionality. The trace of ma-
trix is denoted by Tr(·). In is an identity matrix of size
n × n. For matrix W = {Wij}, the i-th row and the j-
th column are denoted by bold lowercase wi and wj , re-
spectively. The `p-norm of vector v ∈ Rn is defined as
‖v‖p = (

∑n
i=1 |vi|p)

1
p (p 6= 0). Thus the `∞-norm of v is

‖v‖∞ = maxi |vi|. The `r,p-norm of W ∈ Rd×m is defined
as ‖W‖r,p = (

∑d
i=1(

∑m
j=1 |Wij |r)

p
r )

1
p (r 6= 0, p 6= 0).

The `2,0-norm of W is the number of non-zero rows of W .
The `2,2-norm ofW is exactly its Frobenius norm. Note that
the `2,0-norm is not a valid norm since it does not satisfy
the positive scalability: ‖λW‖2,0 = |λ|‖W‖2,0 for scalar λ.
The term “norm” here is just for convenience.

Self-representation
self-representation is feature-level representation while s-
parse representation and low-rank representation belong to
sample-level representation (Zhu et al. 2015). Without label-
s, self-representation simply uses the features as response,
under the assumption that each feature can be linearly rep-
resented by all features. For the i-th feature xi ∈ Rn:

xi ≈
d∑
j=1

xjWji = Xwi. (1)
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Figure 1: An illustration of self-representation based feature se-
lection. Different shapes in X mean different features, i.e., each
column is a feature. a, b, c and d are representation coefficients.
The first and the third feature are selected, then the second and the
fourth feature in XW are represented by the linear combination of
the selected features. Here we distinguish different combinations
by grayscale.

where wi = [W1i, . . . ,Wdi]
T is the representation coeffi-

cient vector of xi. Then for all features:

X ≈ XW. (2)

W is the representation coefficient matrix, or it can be called
the selection matrix when doing feature selection. We can
see that if the i-th feature is selected, then Wii should be e-
qual to one and the other entries of wi are all zeros. And if
the entries in the j-th row of W are all zeros, then the j-th
feature is not selected and it will be reconstructed by the lin-
ear combination of the selected features, which accounts for
feature redundancy. The number of zero rows of W corre-
sponds to the number of selected features. We conceptually
illustrate above analysis in Figure 1.

Related Works
CPFS CPFS (Masaeli et al. 2010b) is developed from the
viewpoint of PCA (Turk and Pentland 1991), whose goal
is to maximize the variance, or equivalently, to minimize
the reconstruction error of self-representation. The objective
function of CPFS is:

min
W
‖X −XW‖2F + λ

d∑
i=1

‖wi‖∞, (3)

CPFS achieves the flat sparsity by forcing the biggest entry
in each row ofW to be small. parameter λ controls the trade-
off between representation residue and sparsity. Ranging λ
from zero to infinity means ranging the number of selected
features from d to 0. Therefore, if we want to select k fea-
tures, we need to tune λ to make the number of non-zero
rows of W exactly equal to k.

RSR Considering that there usually exist some outliers in
the data matrix, and the Frobenius norm is sensitive to out-
liers, RSR (Zhu et al. 2015) aims to solve the following joint
`2,1-norm problem:

min
W
‖X −XW‖2,1 + λ‖W‖2,1. (4)

The regularization term is to avoid trivial solution and
achieve feature selection. Similar to CPFS, large value of
λ means selecting fewer features. Actually, RSR can be



viewed as an unsupervised version of RFS (Nie et al. 2010a).
The limitation of RSR is that in some cases, the features are
independent, or the correlation between features is nonlin-
ear, then self-representation perhaps does not work well.

GRFS GRFS (Zhao et al. 2015) considers the representa-
tion coefficient matrix A and the feature selection matrix Λ
separately. ΛA plays the role of W in CPFS and RSR. The
objective function of GRFS is as follows:

min
A,Λ
‖X −XΛA‖2F + βTr(ΛXTLXΛ), (5)

s.t. Λ = diag(λ), Card(λ) = k, λi ∈ {0, 1}

where λ ∈ Rd is a binary vector and its cardinality is k. Λ is
a diagonal matrix with the i-th diagonal entry being λi. The
second term is the graph regularization which preserves the
intrinsic structure in the original data space. This problem
is computationally intractable due to the integer variables in
vector λ, thus the authors tried to optimize the relaxed one:

min
A,Λ
‖X −XΛA‖2F + βTr(ΛXTLXΛ) + α‖λ‖1. (6)

However, this relaxed problem exists trivial solution.

The Proposed Method
Formulation
We rewrite the self-representation model in Eq.(2) as fol-
lows:

X = XW + Z, (7)

where Z ∈ Rn×d is the representation residue. The pre-
vious methods usually use a matrix norm to characterize
the residue such as the term ‖Z‖2,1 = ‖X − XW‖2,1 in
RSR. The hard linear constraint in self-representation may
be overstrict for the features that are not linearly correlated.
Motivated by the recent work Flexible Manifold Embedding
(FME) (Nie et al. 2010b) for feature extraction, we aims to
consider the residue Z explicitly by solving the following
problem:

min
Z,‖W‖2,0=k

‖X −XW − Z‖2,1 + βR(Z). (8)

We relax the linear constraint by introducing the residue into
the objective function to better cope with the nonlinear case.
The selection matrixW and the representation residue Z are
optimized simultaneously. R(Z) is a kind of regularization
on Z to avoid trivial solution. To obtain a more accurate so-
lution for feature selection, we directly use the `2,0-norm of
W as a constraint. Parameter k has explicit meaning. Thus
the number of selected features can be set directly instead of
by tuning the parameter.

Here Z models the mismatch between X and XW . From
another viewpoint, the residue Z may be considered as a
modeling of the noise and outliers, and the regularization
term R(Z) tends to suppress their effect. Following FME,
we simply use the Frobenius norm ofZ as R(Z). Further, we

Algorithm 1 ALM Method to Solve Eq.(11)

1: Set 1 < ρ < 2, initialize µ > 0,Λ.
2: while not converge do
3: Update X by minX f(X) + µ

2 ‖h(X) + 1
µΛ‖2F .

4: Update Λ by Λ := Λ + µh(X).
5: Update µ by µ := ρµ.
6: end while

would like the reconstructed data to preserve the local struc-
ture of the original data. A common way (Cai et al. 2007;
Nie et al. 2010b; Zhao et al. 2015) is by minimizing:

1

2

n∑
i,j=1

‖xiW − xjW‖22Sij = Tr(WTXTLXW ), (9)

where S ∈ Rn×n is the symmetric similarity matrix that
Sij represents the similarity between xi and xj . The graph
Laplacian L ∈ Rn×n is defined as L = D − S and the
normalized one is L̃ = D−

1
2LD−

1
2 , where D is a diagonal

matrix with Dii =
∑
j Sij . Therefore, the final objective

function is:
min
W,Z
‖X −XW − Z‖2,1 + αTr(WTXTLXW )

+ β‖Z‖2F s.t. ‖W‖2,0 = k. (10)

Optimization
In this subsection, we are going to optimize the robust, regu-
larized and constraint problem based on the Augmented La-
grange Multiplier (ALM) method (Bertsekas 1982).

A Brief Description of ALM For the following con-
strained problem:

min
X

f(X) s.t. h(X) = 0, (11)

we can transform it into an unconstrained one based on
ALM:

min
X,Λ,µ

f(X) + Tr(ΛTh(X)) +
µ

2
‖h(X)‖2F

⇔ min
X,Λ,µ

f(X) +
µ

2
‖h(X) +

1

µ
Λ‖2F , (12)

where Λ is the Lagrange multiplier, and µ is the quadratic
penalty parameter. The procedure of ALM to solve Eq.(11)
is described in Algorithm 1.

Solving Eq.(10) Using ALM Method We introduce two
slack variables E ∈ Rn×d and V ∈ Rd×d, Eq.(10) can then
be rewritten as:

min
W,Z,E,V

‖E‖2,1 + αTr(WTXTLXW ) + β‖Z‖2F

s.t. E = X −XW − Z,W = V, ‖V ‖2,0 = k (13)
Based on ALM, we need to solve:

min
W,Z,E,V

‖E‖2,1 +
µ

2
‖E −X +XW + Z +

1

µ
Λ‖2F

+
µ

2
‖W − V +

1

µ
Σ‖2F + αTr(WTXTLXW )

+ β‖Z‖2F s.t. ‖V ‖2,0 = k (14)



A joint minimization with respect to the four variables is
difficult. Thus we divide the problem into four subproblems,
and optimize them alternatively and iteratively. The whole
procedure is summarized in Algorithm 2.

Step 1: Update E With W , V and Z fixed, the problem
becomes:

min
E

1

2
‖E −G‖2F +

1

µ
‖E‖2,1, (15)

where G = X −XW − Z − 1
µΛ. Note that Eq.(15) can be

decoupled as:

min
ei

n∑
i=1

1

2
‖ei − gi‖22 +

1

µ
‖ei‖2. (16)

This problem can be efficiently solved by the soft-
thresholding operator (Bach et al. 2012) with following
closed form solution:

ei =

{
(1− 1/µ

‖gi‖2 )gi, ‖gi‖2 > 1
µ

0, ‖gi‖2 ≤ 1
µ

(17)

Step 2: Update V With W , E and Z fixed, the problem
becomes:

min
‖V ‖2,0=k

‖V −Q‖2F , (18)

whereQ = W+ 1
µΣ. Let Ind be the index set corresponding

to the first k biggest ‖qi‖2, then the optimal solution is:

vi =

{
qi, i ∈ Ind
0, i /∈ Ind (19)

Step 3: Update W With E, V and Z fixed, the problem
becomes:

min
W

µ

2
‖E −X +XW + Z +

1

µ
Λ‖2F

+
µ

2
‖W − V +

1

µ
Σ‖2F + αTr(WTXTLXW ) (20)

Take derivative with respect to W and set it to zero, we get

W = P−1

(
XT (X − E − Z − 1

µ
Λ) + V − 1

µ
Σ

)
, (21)

where P = (XT L̂X + Id), and L̂ = 2λ
µ L + In is a sparse

and symmetric matrix.
Step 4: Update Z With W , V and E fixed, the problem

becomes:

min
Z

µ

2
‖H + Z‖2F + β‖Z‖2F , (22)

where H = E − X + XW + 1
µΛ. Taking derivative with

respect to Z and setting it to zero, we have

Z = − µ

µ+ 2β
H. (23)

Since Eq.(10) is a non-convex problem, Algorithm 2 will
find a local solution. The convergence of ALM method
has been discussed in previous works such as (Bertsekas

Algorithm 2 The Proposed Method RRCS

Input: Data matrix X ∈ Rn×d, trade-off parameters α,β,
and the number of selected features k.

1: Initialize W = Id, Z = 0 ∈ Rn×d, initialize Λ ∈ Rn×d
and Σ ∈ Rd×d randomly. Initialize µ = 0.1, ρ = 1.01.

2: while not converge do
3: Update E by Eq.(17).
4: Update V by Eq.(19).
5: Update W by Eq.(21).
6: Update Z by Eq.(23).
7: Update Λ by Λ := Λ + µ(E −X +XW + Z).
8: Update Σ by Σ := Σ + µ(W − V ).
9: Update µ by µ := ρµ.

10: end while
Output: The index set Ind of the selected features.

1982). The overall computational complexity of the pro-
posed method in each iteration is about O(d3 +nd2), which
is mainly the cost of calculating the selection matrix W .
Note that the inverse of matrix P in Eq.(21) can be calculat-
ed before we start the iteration process, since it only depends
on the input data. Moreover, we can resort to the Woodbury
formula to transform the inverse operation of d × d matrix
to n× n matrix, when d is much larger than n.

Experiments

Datasets

We use eight widely used benchmark datasets in our exper-
iments. There are three microarray datasets: TOX1, CLL-
SUB1 and MLL2, three face datasets: JAFFE3, ORL4 and
Yale4, one object dataset COIL-204 and one shape dataset
MPEG-75. We provide a brief description of these datasets
below.

TOX and CLL-SUB are from the GEO gene expression
data depository with retrieval ID GDS1454 and GDS968,
respectively. MLL contains 72 samples of three classes: a-
cute lymphoblastic leukaemia, acute myeloid leukaemia and
mixed-lineage leukaemia. JAFFE contains images of facial
expressions posed by ten Japanese female models. The im-
ages in ORL were taken against a dark homogeneous back-
ground with the subjects in an upright, frontal position.
YALE contains grayscale images under variable illumina-
tions. COIL-20 is an object dataset with the images cap-
tured from varying angles. In MPEG-7, the shape classes are
very distinct, but the dataset shows substantial within-class
variations. All datasets are standardized to zero-mean and
normalized by standard deviation. The statistics are summa-
rized in Table 1.

1http://featureselection.asu.edu/datasets.php
2http://www.escience.cn/people/fpnie/papers.html
3http://www.kasrl.org/jaffe.html
4http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
5http://www.dabi.temple.edu/∼shape/MPEG7/dataset.html



Table 1: Description of Datasets

Dataset Type # Samples # Dim # Classes
TOX gene 171 5748 4

CLL-SUB gene 111 11340 3
MLL gene 72 12582 3

JAFFE face 213 1024 10
ORL face 400 1024 40

YALE face 165 1024 15
COIL-20 object 1440 1024 20
MPEG-7 shape 4096 1400 70

Comparison methods
We compare the proposed RRCS with the following state-
of-the-art or specifically designed unsupervised feature se-
lection methods.

• AllFea is taken as the baseline method which selects all
the features.

• JELSR(Hou et al. 2011) selects features via joint embed-
ding learning and sparse regression.

• UDFS(Yang et al. 2011) selects the most discriminative
feature subset from the whole feature set in batch mode.

• NDFS(Li et al. 2012) has similar idea with JELSR but
imposes a nonnegative constraint on the indicator matrix.

• RUFS(Qian and Zhai 2013) incorporates robust nonnega-
tive matrix factorization, local learning and robust feature
selection into a joint framework.

• RSR(Zhu et al. 2015) selects features by solving the joint
`2,1-norm minimization problem with self-representation.

• RSR-E is an extended version of RSR which explicit-
ly considers the representation residue in the formula-
tion. Concretely, RSR-E aims to solve the problem of
minW,Z ‖X −XW − Z‖2,1 + λ‖W‖2,1 + β‖Z‖2F .

• RRCS-S is a simplified version of our method RRCS. It
does not consider the representation residue and does not
add the graph regularization term. The objective function
is minW ‖X −XW‖2,1s.t.‖W‖2,0 = k.

• AUFS(Qian and Zhai 2015) selects features via minimiz-
ing joint adaptive loss and `2,0-norm regularization.

• SOGFS(Nie et al. 2016) performs feature selection and
local structure learning simultaneously and thus the simi-
larity matrix can be determined adaptively.

Experimental setup
The trade-off parameters of each compared method are
tuned by grid search from the value set used in each pa-
per, and the nearest neighbor parameter is fixed to be 5
when we construct the graph Laplacian matrix. For our
method RRCS, we tune the parameters α and β from
{10−3, 10−2, 10−1, 1, 101, 102, 103}. We report the best re-
sults from the optimal parameters, and note that differen-
t parameters may be used for different datasets. Following
previous works, we set the number of selected features k as
{50, 100, 150, 200, 250, 300} for all datasets.

For the selected features, K-means algorithm is repeated
20 times with random initialization to evaluate the average
clustering performance. It is reasonable to assume that the
better the selected features are, the higher results will be ob-
tained. The clustering quality is measured by Normalized
Mutual Information (NMI) and Accuracy (Acc)(Cai et al.
2005). The values of NMI and Acc range from 0 to 1 with
higher score corresponding to better performance.

Clustering accuracy is the average performance of label
matching results between ground truth labels and predicted
labels.Formally, Acc is defined as follows:

Acc =
1

n

n∑
i=1

δ(yi,map(pi)),

where yi and pi are the ground truth label and the predicted
label, respectively. δ(x, y) equals to 1 if x = y and equals to
zero otherwise.map(·) is the permutation mapping function
that maps the predicted label to different true labels. The
maximal fraction is taken as the final clustering accuracy.

Let C, C ′ denote the set of true clusters and predicted
clusters, respectively. NMI is defined as:

NMI =

∑
ci∈C,c′j∈C′ p(ci, c

′
j) · log2

(
p(ci,c

′
j)

p(ci)·p(c′j)

)
max (H(C), H(C ′))

,

where p(ci) and p(cj) are the probability that a data point
belongs to the cluster ci and cj , respectively. p(ci, cj) is the
joint probability and H(·) is the entropy. We can see that
NMI = 1 if the two clusters are identical, and NMI = 0
if they are independent.

Experimental Results and Analysis
In terms of Acc and NMI, the clustering results of different
methods on the eight datasets are reported in Figure 2. We
have the following observations and analysis:
• Generally speaking, the clustering performance on the s-

elected features is better than the performance on all fea-
tures. Perhaps it is because many noise features will be
brought in when we select more features. The results
demonstrate the necessity and effectiveness of feature s-
election, which both reduces the computational cost and
improves the clustering performance.

• It tends to select fewer features on gene datasets since
there is a trend of performance degradation. This is con-
sistent with the fact that usually only a few of genes are
associated with a given disease or biological function.

• We may find on dataset MPEG-7, the baseline AllFea
achieves the best clustering results. The reason may be
that MPEG-7 is a shape dataset with binary images and
thus there is no noise in the images.

• Comparing to RSR, RSR-E achieves better performance
in most of the cases, which demonstrates the effective-
ness of considering the representation residue. RRCS-
S also achieves better results than RSR on most of the
datasets, demonstrating the superiority of using `2,0-norm
constraint to do feature selection. Therefore, the pro-
posed method RRCS, which considers the representation
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Figure 2: Clustering performance of different methods on their selected features.

residue, the local structure and the `2,0-norm constraint
simultaneously, achieves the best or top-3 average perfor-
mance on all datasets.

• It is still an open problem to decide the optimal number
k and we would better make the decision depending on
the specific task and the input data in real-life applica-
tions. Since k has explicit meaning in our RRCS, thus we
can avoid the burden of tuning the parameter. As a sim-
plified version of RRCS, the method RRCS-S which also
achieves competitive performance on the datasets is pa-
rameter free with a given k.

To verify the robustness of the proposed method, we
conducted experiments on Yale and MPEG-7 datasets with

Gaussian white noise. Concretely, 30% and 50% images
were randomly selected to add the noise of mean 0 and vari-
ance 0.01. The clustering results are reported in Figure 3. We
can find that the performance of baseline AllFea on MPEG-
7 with explicit noise is no longer the best one, verifying the
first and the third observations in Figure 2. The ratio of noisy
images has smaller effect on our RRCS than on other meth-
ods, since RRCS not only uses the robust `2,1-norm loss ter-
m, but also considers the representation residue which can
be viewed as a modeling of the noise and outliers.

We also studied the effect of parameters α and β to the fi-
nal performance on CLL-SUB, COIL-20, JAFFE and ORL.
The experimental results in terms of Acc are shown in Fig-
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# Selected Features

50 100 150 200 250 300

A
cc

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

RRCS
RRCS-S
SOGFS
AUFS
RSR
RSR-E
RUFS
NDFS
UDFS
JELSR
AllFea

(c) JAFFE-Acc (ratio=0.3)
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(d) JAFFE-NMI (ratio=0.3)
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(f) YALE-NMI (ratio=0.5)
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Figure 3: Clustering performance on datasets with Gaussian white noise.
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Figure 4: Parameter effect to clustering performance.
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Figure 5: Curves of the objective function value.

ure 4. It can be seen that our RRCS is not very sensitive to
the regularization parameters in a wide range. Figure 5 plots
the curves of the objective value on the same four datasets.
We can see that the proposed method has rapid convergence.

Conclusion
In this paper, we have proposed an approach called RRC-
S for unsupervised feature selection. RRCS is formulated

from the viewpoint of self-representation with the overstrict
assumption of hard linear constraint being relaxed by explic-
itly considering the representation residue to better deal with
the nonlinear case. Feature selection is performed by solving
the optimization problem with the non-smoothed `2,1-norm
loss term under the `2,0-norm constraint. A graph regular-
ization term is also added to preserve the local structure of
data space. Extensive experiments have demonstrated the ef-
fectiveness of RRCS, comparing to state-of-the-art methods.
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