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Motivations & Contributions Experimental Results

€ Two Issues of Spectral Clustering » Comparison Methods: (1) Nystrom [2], (2) KNN-SC [3], (3) LSC-R,
» Scalability Issue: Spectral clustering suffers from high computational LSC-K [4], (4) SSSC [5].
cost. It takes O(n?) for eigen-decomposition with n» denoting the number ] T —— . R ] o= o a ke
of data points. - I8 AR
> Post-processing: Spectral clustering relys on post-processing. Kmeans is 8‘\ | o o T e g
a common way to obtain the final cluster labels, while kmeans 1tself 1s e w e w ™ s @ e o v @ @ W MO
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> Reduce the cost of eigen-decomposition. The Nystrom method is a M\ o  e— o oo NI 1
popular technique for finding an approximate solution. e B E E EE W W me e S
(a) COIL-20 (b) MINIST-extend (e) USPS (¢) reconstructed graph FG? (d) constructed graph W

» Reduce the data size by sampling some representative points beforehand.

. . Figure 1. Curves of objective, norm of (F-G), Figure 2. Practical illustrations
‘ Our Contributions performance and parameter effect
» The proposed method scales linearly with the data size, handling the Table 1 Running time (s)
scalability 1ssue from the viewpoint of graph reconstruction. Dataset KNN-SC  Nysttom ~ SSSC ~ LSC-R  ONGR-R
» No post-processing. The interpretability is offered to obtain the cluster UsPs 385 5. B 1D 2, 1L A
, PenDigits 28.04 33.03  110.98  21.67  19.29
labels directly. MINIST 1401.41  40.88  217.68  31.95  39.40
. . CoverType - 168.55  463.22  235.61  202.46
» Due to the orthogonal and nonnegative constraints, the reconstructed MINIST_;I:end _ 17824 1095.7%  166.55  147.41

graph naturally has clear structure about the clusters.

Formulation & Illustration

Table 2 Clustering Performance

Metric Dataset KNN-SC Nystrém SSSC LSC-R LSC-K ONGR-R  ONGR-K
USPS 66.84 + 3.05  69.524+2.13  53.854+0.69 75.67+5.05  77.00+ 7.20 78.82 80.59
e e - PenDigits 64.15 + 0.15 72.334+2.49  74.924+0.00 79.16 +3.21  79.97 + 6.11 87.30 88.02
/ | ! MINIST 68.72+0.03  55.384+3.13  53.014+0.35 69.82+5.23  76.21 + 6.20 70.75 78.59
: min Tr(F TLF : COIL-20 82.22 +0.00 63.50+3.00 61.384+1.74 71.19+4.79  72.80+ 6.66 87.08 87.92
I ( ) . COIL-100 50.81 +0.40  46.66+1.54  43.944+1.29 51.604+1.59  57.45 4+ 2.50 54.60 67.13
! » The relaxed problem of Ncut. FTE—7 l Acc Connect-4 42.68 4+ 0.15  36.43+0.05 65.82+0.00 40.79+2.80  40.03 £ 2.82 55.57 52.61
. k — : Seismic 67.69 £ 0.01  67.214+0.00 66.524+0.00 67.58+0.44 67.81 4+ 0.12 68.54 68.42
! | i RCV1 = 16.94 +0.72  14.224+0.00 16.47 + 0.38 s 17.49 s
, . . ‘ : CoverType = 27.00 + 1.06  44.06 +0.00  41.87 & 2.01 - 53.30 o
l > Add a non-negative constraint ; [ MINIST-extend = A7.25+2.47  55.744+0.00 58.72 + 5.09 - 59.26 o
i T ’ [
. (A
: . S 1 . min Ir(F ' LF l mean 64.59 + 0.55)  50.224+1.66  53.354+0.41 57.29 +3.06 (67.34 4+ 4.53 63.27 74.75
. to get discrete 1indicator matrix. Tl ey ;
] e k | USPS 80.454+1.31  65.194+0.93 55.93+0.56 77.48+2.86  80.64+2.34 78.48 82.76
i | PenDigits 78.93 +1.27  66.65+1.09  73.514+0.00 79.84+2.26 81.85+2.74 83.50 84.42
l : . l MINIST 76.60 + 0.07  48.044+1.27 53.554+0.11 66.73+2.29 77.33+2.36 69.05 79.50
| » The VICWpOlIlt of graph reco B : COIL-20 91.15 4 0.00 76.50 +1.39  78.09+1.15 90.31+2.89  90.90 + 2.37 95.18 96.35
' : . . T i COIL-100 83.80 £ 0.17  76.154+0.58  69.11 4+ 0.48 77.20 +0.53  82.96 + 0.67 79.27 88.16
! nstruction. Here W 1s dOUbly- min W — FF : NMI Connect-4 0.18 & 0.00 0.24+0.01  024+0.00  0.25+0.09  0.22+0.10 0.58 0.32
I i F>0 FTF—] F | N i Seismic 27.60 £ 0.02  27.524+0.01 25.124+0.00 29.85+0.45  29.93 4+ 0.83 31.90 32.20
| stochastic. = =1k : RCVI _ 25.81 +0.27 17.854+0.00 23.65+0.21 _ 24.19 _
l : CoverType _ 13.94 £ 0.00  20.58 +0.00  19.56 + 0.84 - 21.05 -
| & : MINIST-extend _ 36.22 4+ 0.88  54.75+0.00 55.51 4 1.61 _ 56.39 _
E : mean (62.67 + 0.41)  43.63+0.64  44.874+0.23 52.05+1.40 (63.40+1.63) 53.96  (66.24)
|
: :
[ |

> Introduce a slack variable G, {G N FGTH; ) AHF _\GHZJ

which 1s called label matrix. >0, FTF=1, F .
S 4 Conclusion & Outlook

i » Under the two constraints, /" has only s E . We have proposed an approach for large scale clustering based on E
| one non-zero entry in each row, and the 088 ] ; _ i . graph reconstruction. The reconstructed graph is structured, and the
I . ' ' N—_— N I . oq o . . . . I
. Lynmormof each columnis 1. ~  bF—m AL ® i " interpretability is provided to get rid of the post-processing. |
F' B / : \ y,
E » The nonnegativity offers interpretability ; § I e \
. of F, and the reconstructed graph FFTis _ _ ! _ i | » Since the noise and outliers are always there in real applications, a !
E naturally structured. 5. :\Ei.“ i ' robust version 1s needed to better deal with the case. |
E > In a sense, the interpretability of F is : X '“T... = 333\'\“ i i » The original graph should better be structured. Hence, a structured and !
i passed on to G. Fs : _ ses i ' doubly-stochastic /# needs to be designed efficiently. !
i » The value range of the original graph and the reconstructed graph may E
' differ a lot. We can introduce a scale fator to fit them more properly. |
ptimization . » ONGR has close relationship with NMF. It is of great value to explore E
p T ~ . their underlying connections and develope fast NMF methods. ,'
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