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Motivations & Contributions

Optimization

€ Two Issues of graph-based methods

[ Update I with Wb, S fixed }:> [ min Tr(FLF")

1. Most existing graph-based methods perform dimensionality reduction FF' =1,
and graph construction separately. 4 @ n
2. One usually constructs a graph by KNN criteria. However, due to the g IHWTxi -Wx| s, + B, 2)

i,j=

noise and redundant information in the original data, such a pre- Update Wb with F, § fixed -

defined graph has no clear structure.
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1. We performe dimensionality reduction and graph construction [UpdateSwr[h W’b’Fﬁxed} | | i (d W7 [ 44 z)
. . L . = +—d|, [d, =W x,-W x| +2|f -7,
simultaneously. Both the optimal graph and the projection matrix can T e R A ] i )l )
be obtained. N /!

» the optimal F is formed by the eigenvectors of L corresponding to the
first ¢ smallest eigenvalues.

2. We take the rank constraint to learn a structured graph. The learned
graph 1s also sparse.

» The optimal W and b can be obtained by setting the derivatives of the
objective equal to zero, respectively.

3. A simple algorithm is derived for the problem with rank constraint.
Extensive experiments demonstrate its effectiveness.

Notations & Background

» Notations: X € R¥"is the data matrix, where the first / samples are
labeled and the last u samples are unlabeled. Y € R“*"1s the label matrix
defined as y;=1 if x; has label j and y,=0, otherwise. W € R**“ is the
projection matrix. L 1s the graph Laplacian and § 1s the stmilarity matrix.
The i-th column of matrix M 18 m;, and the (i, j)-th entry 1s m;;.

@ Linear Manifold Regularization (LMR)

We take linear Laplacian regularized least squares (LapRLS/L) as an
example to briefly introduce LMR.

» It is independent to learn s; for each sample. The quadratic problem with
linear constraint has closed form solution. [Huang et al., 20135]

» Initialization: We learn an initial graph by ANL. The parameter y can be
initialized adaptively, and A can be tuned dynamically.

Experimental Results

» Comparison methods: (1) SDA [Cai et al., 2007]. (2) TR-FSDA [Huang
et al., 2012]. (3) SSDL [Gao et al., 2015]. (4) FME [Nie et al., 2010],
and (5) LapRLS/L [Sindhwani et al., 2005].
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& Adaptive Neighbor Learning (ANL)

We consider the probabilistic neighbors to learn the similarity matrix S,
and we simply have s,~0.
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Figure 1. Practical illustrations Figure 2. Parameter effect
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» U 1s a diagonal matrix that picks out the labeled data. o; is the i-th
smallest eigenvalue of L. F'1s a kind of embedding of .X.

» The first term of the objective function is acturally conducting ANL in
the projected space.

» The multiplicity of eigenvalue zero of graph Laplacian L is equal to
the number of connected components 1n the graph. Thus we can take
the rank constraint as a structure constraint.

» The graph and the projection matrix can be both optimized.
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Formulation Of LMRAG Table 1 Classification Accuracy (Part of the results)
1 labeled sample 2 labeled sample 3 labeled sample
Lataset Mithend Unlabeled Test Unlabeled Test Unlabeled Test
e ~. SDA | 2544£3.42 2542E281 | 3486 £3.67 3458L2.71 | 39.61£468 38.30 £ 1.43
ke \ TR-ESDA | 2544+446 2570+2.97 | 33.83+3.16 33.46+3.27 | 38.07+4.00  38.55+ 3.56
| e . : —_— SSDL | 26.75+193 27.20+284 | 34.80+255 34.08+226 | 38.32+1.79  37.62+2.74
> Incorporate ANL . W W 2 | w ! FME | 23654313 24444256 | 30.15+3.16 31.83+4.46 | 33.79+1.06  32.60 + 1.26
| into LMR. Take the min, L AT | B VIRl T 15 = ! LapRLS/L | 26.90+1.60 26.60+3.65 | 33.83+2.34 34.31+0.55 | 40.49+1.42  39.94 + 3.52
|k constratint as a w,b,520,5" 1=1, e : LMRAG | 27.86+3.49 27.73+3.00 | 36.12+256 36.46+1.06 | 41.13+1.28 41.2742.08
et . zankil)Sn=c | SDA 60.75 £3.46 68.42+2.35 | 77.85£2.87 76.70£3.29 | 82.23£2.50 SL79L2.74
structure constraint. TR-ESDA | 69.54+236 68.53+201 | 76.52+3.11 76.69+3.62 | 83.00+1.18 82.77+3.23
T T T T T !
| +alr(W X +b1' —Y)UW X +b1" -7Y) | coll oo | SSDL | 65204254 6456253 | 75.11£204 7556+208 | 79.60£337  80.124 153
, | Y FME | 69.36+4.12 69.354+2.28 | 78.48+1.95 76.98+2.38 | 84.38+1.74  84.35 4 2.70
: ! LapRLS/L | 68.68+4.20 66.38+1.690 | 75.85+1.20 75.98+2.67 | 79.60+1.33  79.30 + 1.61
! | LMRAG | 70.75+1.80 70.12+2.57 | 79.70+2.73 77.84+3.09 | 84.58 +1.86 85.00 + 1.45
! : | SDA 01.62L1.76 88.06L4.05 | 95.04+2.84 97.36£1.41 | 9852155 90.22 £ 1.88
'> Transform the rank Z o, =0 rank(L)=n—c : TR-FSDA | 8784302  86.05£725 | 0683£366 0628£276 | 0815£321 0022 134
! constrating . c : o s SSDL | 83.24+3.65 84.65+3.97 | 94.60+£261 94.26+272 | 98.80+1.01  98.20 +1.77
, ' i=1 Z o, = min Tr(FLF") ! FME | 80.27+823 82484520 | 92194518 90.23+3.54 | 94.81+£4.22  94.57+ 1.98
: e ! LapRLS/L | 86.40+6.12 86.51+£4.98 | 95.63+£5.11 O457+3.84 | 99.26£2.69 08.20 + 1.01
! = ‘ ! LMRAG | 97.84+2.80 98.45+1.55 | 99.38 £2.09 98.45+1.45 | 99.26+1.66 99.69 + 0.43
! | SDA 31.53£3.71 3229 1.68 | 68.40L2.31 6838178 | 7747 £2.32 7757 E£2.63
! | TR-FSDA | 1898+002 22.56+1.37 | 67.55+285 67.51+1.35 | 79.27+1.79  78.13 % 1.30
| : omupie | SSDL | 53784108  5317£235 | 70284283 70.60£210 | 7749+£114 7814111
, o _ n . S . > ! FME | 53494147 52264124 | 60.92+2.17 69.06+1.36 | 78.06+2.39  77.19+1.92
' > The final objective. min 2 : w'x, —W"x H s, + 7,” S” 4 IBHWH ! LapRLS/L | 53.31+£2.19 52.80+£268 | 69.15+£2.00 68.63+£1.77 | 77.35+£2.33  76.57 £ 2.20
! >0.57 121 FFT J2™ Y F F ! LMRAG | 61.30+£2.29 61.29+1.08 | 72.61+2.50 72.61+2.71 | 8242+1.06 81.93+1.15
! W,b,520,8T 1=1,FFT =] |
] |
! :
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