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u Two Issues of graph-based methods
1. Most existing graph-based methods perform dimensionality reduction 

and graph construction separately.
2. One usually constructs a graph by KNN criteria. However, due to the 

noise and redundant information in the original data, such a pre-
defined graph has no clear structure.

u Our Contributions 
1. We performe dimensionality reduction and graph construction 

simultaneously. Both the optimal graph and the projection matrix can 
be obtained.

2. We take the rank constraint to learn a structured graph. The learned 
graph is also sparse.

3. A simple algorithm is derived for the problem with rank constraint. 
Extensive experiments demonstrate its effectiveness.
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uAdaptive Neighbor Learning (ANL)
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uLinear Manifold Regularization (LMR)
We take linear Laplacian regularized least squares (LapRLS/L)  as an 
example to briefly introduce LMR.

We consider the probabilistic neighbors to learn the similarity matrix S,  
and we simply have sii=0.
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ØNotations:              is the data matrix, where the first l samples are 
labeled and the last u samples are unlabeled.                is the label matrix 
defined as yji=1 if xi has label j and yji=0, otherwise.               is the 
projection matrix. L is the graph Laplacian and S is the similarity matrix. 
The i-th column of matrix M is mi , and the (i, j)-th entry is mij.

Figure 1. Practical illustrations Figure 2. Parameter effect

Table 1 Classification Accuracy (Part of the results)
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Update F with W,b, S fixed

Update W,b with F, S fixed

Update S with W,b, F fixed

Ø Incorporate ANL 
into LMR. Take the 
rank constratint as a 
structure constraint.

Ø Transform the rank 
constratint.

Ø The final objective. 

ØU is a diagonal matrix that picks out the labeled data. σi is the i-th 
smallest eigenvalue of L. F is a kind of embedding of X. 

Ø The first term of the objective function is acturally conducting ANL in 
the projected space. 

Ø The multiplicity of eigenvalue zero of graph Laplacian L is equal to 
the number of connected components in the graph. Thus we can take 
the rank constraint as a structure constraint. 

Ø The graph and the projection matrix can be both optimized. 

Ø the optimal F is formed by the eigenvectors of L corresponding to the 
first c smallest eigenvalues.  

Ø The optimal W and b can be obtained by setting the derivatives of the 
objective equal to zero, respectively.

Ø It is independent to learn si for each sample. The quadratic problem with 
linear constraint has closed form solution. [Huang et al., 2015]

Ø Initialization: We learn an initial graph by ANL. The parameter γ can be 
initialized adaptively, and λ can be tuned dynamically.

Ø Comparison methods: (1) SDA [Cai et al., 2007]. (2) TR-FSDA [Huang 
et al., 2012]. (3) SSDL [Gao et al., 2015]. (4) FME [Nie et al., 2010], 
and (5) LapRLS/L [Sindhwani et al., 2005].
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